AAAI.2024 - Safe, Robust and Responsible AI Track

Total: 109

#1 ImageCaptioner2: Image Captioner for Image Captioning Bias Amplification Assessment [PDF] [Copy] [Kimi]

Authors: Eslam Abdelrahman ; Pengzhan Sun ; Li Erran Li ; Mohamed Elhoseiny

Most pre-trained learning systems are known to suffer from bias, which typically emerges from the data, the model, or both. Measuring and quantifying bias and its sources is a challenging task and has been extensively studied in image captioning. Despite the significant effort in this direction, we observed that existing metrics lack consistency in the inclusion of the visual signal. In this paper, we introduce a new bias assessment metric, dubbed ImageCaptioner2, for image captioning. Instead of measuring the absolute bias in the model or the data, ImageCaptioner2pay more attention to the bias introduced by the model w.r.t the data bias, termed bias amplification. Unlike the existing methods, which only evaluate the image captioning algorithms based on the generated captions only, ImageCaptioner2incorporates the image while measuring the bias. In addition, we design a formulation for measuring the bias of generated captions as prompt-based image captioning instead of using language classifiers. Finally, we apply our ImageCaptioner2metric across 11 different image captioning architectures on three different datasets, i.e., MS-COCO caption dataset, Artemis V1, and Artemis V2, and on three different protected attributes, i.e., gender, race, and emotions. Consequently, we verify the effectiveness of our ImageCaptioner2metric by proposing Anonymous-Bench, which is a novel human evaluation paradigm for bias metrics. Our metric shows significant superiority over the recent bias metric; LIC, in terms of human alignment, where the correlation scores are 80% and 54% for our metric and LIC, respectively. The code and more details are available at https://eslambakr.github.io/imagecaptioner2.github.io/.

#2 A Framework for Data-Driven Explainability in Mathematical Optimization [PDF] [Copy] [Kimi]

Authors: Kevin-Martin Aigner ; Marc Goerigk ; Michael Hartisch ; Frauke Liers ; Arthur Miehlich

Advancements in mathematical programming have made it possible to efficiently tackle large-scale real-world problems that were deemed intractable just a few decades ago. However, provably optimal solutions may not be accepted due to the perception of optimization software as a black box. Although well understood by scientists, this lacks easy accessibility for practitioners. Hence, we advocate for introducing the explainability of a solution as another evaluation criterion, next to its objective value, which enables us to find trade-off solutions between these two criteria. Explainability is attained by comparing against (not necessarily optimal) solutions that were implemented in similar situations in the past. Thus, solutions are preferred that exhibit similar features. Although we prove that already in simple cases the explainable model is NP-hard, we characterize relevant polynomially solvable cases such as the explainable shortest path problem. Our numerical experiments on both artificial as well as real-world road networks show the resulting Pareto front. It turns out that the cost of enforcing explainability can be very small.

#3 On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods [PDF] [Copy] [Kimi]

Authors: Kasun Amarasinghe ; Kit T. Rodolfa ; Sérgio Jesus ; Valerie Chen ; Vladimir Balayan ; Pedro Saleiro ; Pedro Bizarro ; Ameet Talwalkar ; Rayid Ghani

Most existing evaluations of explainable machine learning (ML) methods rely on simplifying assumptions or proxies that do not reflect real-world use cases; the handful of more robust evaluations on real-world settings have shortcomings in their design, generally leading to overestimation of methods' real-world utility. In this work, we seek to address this by conducting a study that evaluates post-hoc explainable ML methods in a setting consistent with the application context and provide a template for future evaluation studies. We modify and improve a prior study on e-commerce fraud detection by relaxing the original work's simplifying assumptions that departed from the deployment context. Our study finds no evidence for the utility of the tested explainable ML methods in the context, which is a drastically different conclusion from the earlier work. This highlights how seemingly trivial experimental design choices can yield misleading conclusions about method utility. In addition, our work carries lessons about the necessity of not only evaluating explainable ML methods using tasks, data, users, and metrics grounded in the intended application context but also developing methods tailored to specific applications, moving beyond general-purpose explainable ML methods.

#4 Risk-Aware Continuous Control with Neural Contextual Bandits [PDF] [Copy] [Kimi]

Authors: Jose A. Ayala-Romero ; Andres Garcia-Saavedra ; Xavier Costa-Perez

Recent advances in learning techniques have garnered attention for their applicability to a diverse range of real-world sequential decision-making problems. Yet, many practical applications have critical constraints for operation in real environments. Most learning solutions often neglect the risk of failing to meet these constraints, hindering their implementation in real-world contexts. In this paper, we propose a risk-aware decision-making framework for contextual bandit problems, accommodating constraints and continuous action spaces. Our approach employs an actor multi-critic architecture, with each critic characterizing the distribution of performance and constraint metrics. Our framework is designed to cater to various risk levels, effectively balancing constraint satisfaction against performance. To demonstrate the effectiveness of our approach, we first compare it against state-of-the-art baseline methods in a synthetic environment, highlighting the impact of intrinsic environmental noise across different risk configurations. Finally, we evaluate our framework in a real-world use case involving a 5G mobile network where only our approach satisfies consistently the system constraint (a signal processing reliability target) with a small performance toll (8.5% increase in power consumption).

#5 Robust Uncertainty Quantification Using Conformalised Monte Carlo Prediction [PDF] [Copy] [Kimi]

Authors: Daniel Bethell ; Simos Gerasimou ; Radu Calinescu

Deploying deep learning models in safety-critical applications remains a very challenging task, mandating the provision of assurances for the dependable operation of these models. Uncertainty quantification (UQ) methods estimate the model’s confidence per prediction, informing decision-making by considering the effect of randomness and model misspecification. Despite the advances of state-of-the-art UQ methods, they are computationally expensive or produce conservative prediction sets/intervals. We introduce MC-CP, a novel hybrid UQ method that combines a new adaptive Monte Carlo (MC) dropout method with conformal prediction (CP). MC-CP adaptively modulates the traditional MC dropout at runtime to save memory and computation resources, enabling predictions to be consumed by CP, yielding robust prediction sets/intervals. Throughout comprehensive experiments, we show that MC-CP delivers significant improvements over comparable UQ methods, like MC dropout, RAPS and CQR, both in classification and regression benchmarks. MC-CP can be easily added to existing models, making its deployment simple. The MC-CP code and replication package is available at https://github.com/team-daniel/MC-CP.

#6 CCTR: Calibrating Trajectory Prediction for Uncertainty-Aware Motion Planning in Autonomous Driving [PDF] [Copy] [Kimi]

Authors: Chengtai Cao ; Xinhong Chen ; Jianping Wang ; Qun Song ; Rui Tan ; Yung-Hui Li

Autonomous driving systems rely on precise trajectory prediction for safe and efficient motion planning. Despite considerable efforts to enhance prediction accuracy, inherent uncertainties persist due to data noise and incomplete observations. Many strategies entail formalizing prediction outcomes into distributions and utilizing variance to represent uncertainty. However, our experimental investigation reveals that existing trajectory prediction models yield unreliable uncertainty estimates, necessitating additional customized calibration processes. On the other hand, directly applying current calibration techniques to prediction outputs may yield sub-optimal results due to using a universal scaler for all predictions and neglecting informative data cues. In this paper, we propose Customized Calibration Temperature with Regularizer (CCTR), a generic framework that calibrates the output distribution. Specifically, CCTR 1) employs a calibration-based regularizer to align output variance with the discrepancy between prediction and ground truth and 2) generates a tailor-made temperature scaler for each prediction using a post-processing network guided by context and historical information. Extensive evaluation involving multiple prediction and planning methods demonstrates the superiority of CCTR over existing calibration algorithms and uncertainty-aware methods, with significant improvements of 11%-22% in calibration quality and 17%-46% in motion planning.

#7 Rethinking the Development of Large Language Models from the Causal Perspective: A Legal Text Prediction Case Study [PDF] [Copy] [Kimi]

Authors: Haotian Chen ; Lingwei Zhang ; Yiran Liu ; Yang Yu

While large language models (LLMs) exhibit impressive performance on a wide range of NLP tasks, most of them fail to learn the causality from correlation, which disables them from learning rationales for predicting. Rethinking the whole developing process of LLMs is of great urgency as they are adopted in various critical tasks that need rationales, including legal text prediction (e.g., legal judgment prediction). In this paper, we first explain the underlying theoretical mechanism of their failure and argue that both the data imbalance and the omission of causality in model design and selection render the current training-testing paradigm failed to select the unique causality-based model from correlation-based models. Second, we take the legal text prediction task as the testbed and reconstruct the developing process of LLMs by simultaneously infusing causality into model architectures and organizing causality-based adversarial attacks for evaluation. Specifically, we base our reconstruction on our theoretical analysis and propose a causality-aware self-attention mechanism (CASAM), which prevents LLMs from entangling causal and non-causal information by restricting the interaction between causal and non-causal words. Meanwhile, we propose eight kinds of legal-specific attacks to form causality-based model selection. Our extensive experimental results demonstrate that our proposed CASAM achieves state-of-the-art (SOTA) performances and the strongest robustness on three commonly used legal text prediction benchmarks. We make our code publicly available at https://github.com/Carrot-Red/Rethink-LLM-development.

#8 Truth Forest: Toward Multi-Scale Truthfulness in Large Language Models through Intervention without Tuning [PDF] [Copy] [Kimi]

Authors: Zhongzhi Chen ; Xingwu Sun ; Xianfeng Jiao ; Fengzong Lian ; Zhanhui Kang ; Di Wang ; Chengzhong Xu

Despite the great success of large language models (LLMs) in various tasks, they suffer from generating hallucinations. We introduce Truth Forest, a method that enhances truthfulness in LLMs by uncovering hidden truth representations using multi-dimensional orthogonal probes. Specifically, it creates multiple orthogonal bases for modeling truth by incorporating orthogonal constraints into the probes. Moreover, we introduce Random Peek, a systematic technique considering an extended range of positions within the sequence, reducing the gap between discerning and generating truth features in LLMs. By employing this approach, we improved the truthfulness of Llama-2-7B from 40.8% to 74.5% on TruthfulQA. Likewise, significant improvements are observed in fine-tuned models. We conducted a thorough analysis of truth features using probes. Our visualization results show that orthogonal probes capture complementary truth-related features, forming well-defined clusters that reveal the inherent structure of the dataset.

#9 Constrained Meta-Reinforcement Learning for Adaptable Safety Guarantee with Differentiable Convex Programming [PDF] [Copy] [Kimi]

Authors: Minjae Cho ; Chuangchuang Sun

Despite remarkable achievements in artificial intelligence, the deployability of learning-enabled systems in high-stakes real-world environments still faces persistent challenges. For example, in safety-critical domains like autonomous driving, robotic manipulation, and healthcare, it is crucial not only to achieve high performance but also to comply with given constraints. Furthermore, adaptability becomes paramount in non-stationary domains, where environmental parameters are subject to change. While safety and adaptability are recognized as key qualities for the new generation of AI, current approaches have not demonstrated effective adaptable performance in constrained settings. Hence, this paper breaks new ground by studying the unique challenges of ensuring safety in nonstationary environments by solving constrained problems through the lens of the meta-learning approach (learning to learn). While unconstrained meta-learning already encounters complexities in end to end differentiation of the loss due to the bi-level nature, its constrained counterpart introduces an additional layer of difficulty, since the constraints imposed on task-level updates complicate the differentiation process. To address the issue, we first employ successive convex-constrained policy updates across multiple tasks with differentiable convex programming, which allows meta-learning in constrained scenarios by enabling end-to-end differentiation. This approach empowers the agent to rapidly adapt to new tasks under nonstationarity while ensuring compliance with safety constraints. We also provide a theoretical analysis demonstrating guaranteed monotonic improvement of our approach, justifying our algorithmic designs. Extensive simulations across diverse environments provide empirical validation with significant improvement over established benchmarks.

#10 Conformal Prediction Regions for Time Series Using Linear Complementarity Programming [PDF] [Copy] [Kimi]

Authors: Matthew Cleaveland ; Insup Lee ; George J. Pappas ; Lars Lindemann

Conformal prediction is a statistical tool for producing prediction regions of machine learning models that are valid with high probability. However, applying conformal prediction to time series data leads to conservative prediction regions. In fact, to obtain prediction regions over T time steps with confidence 1--delta, previous works require that each individual prediction region is valid with confidence 1--delta/T. We propose an optimization-based method for reducing this conservatism to enable long horizon planning and verification when using learning-enabled time series predictors. Instead of considering prediction errors individually at each time step, we consider a parameterized prediction error over multiple time steps. By optimizing the parameters over an additional dataset, we find prediction regions that are not conservative. We show that this problem can be cast as a mixed integer linear complementarity program (MILCP), which we then relax into a linear complementarity program (LCP). Additionally, we prove that the relaxed LP has the same optimal cost as the original MILCP. Finally, we demonstrate the efficacy of our method on case studies using pedestrian trajectory predictors and F16 fighter jet altitude predictors.

#11 TTTS: Tree Test Time Simulation for Enhancing Decision Tree Robustness against Adversarial Examples [PDF] [Copy] [Kimi]

Authors: Seffi Cohen ; Ofir Arbili ; Yisroel Mirsky ; Lior Rokach

Decision trees are widely used for addressing learning tasks involving tabular data. Yet, they are susceptible to adversarial attacks. In this paper, we present Tree Test Time Simulation (TTTS), a novel inference-time methodology that incorporates Monte Carlo simulations into decision trees to enhance their robustness. TTTS introduces a probabilistic modification to the decision path, without altering the underlying tree structure. Our comprehensive empirical analysis of 50 datasets yields promising results. Without the presence of any attacks, TTTS has successfully improved model performance from an AUC of 0.714 to 0.773. Under the challenging conditions of white-box attacks, TTTS demonstrated its robustness by boosting performance from an AUC of 0.337 to 0.680. Even when subjected to black-box attacks, TTTS maintains high accuracy and enhances the model's performance from an AUC of 0.628 to 0.719. Compared to defenses such as Feature Squeezing, TTTS proves to be much more effective. We also found that TTTS exhibits similar robustness in decision forest settings across different attacks.

#12 Find the Lady: Permutation and Re-synchronization of Deep Neural Networks [PDF] [Copy] [Kimi]

Authors: Carl De Sousa Trias ; Mihai Petru Mitrea ; Attilio Fiandrotti ; Marco Cagnazzo ; Sumanta Chaudhuri ; Enzo Tartaglione

Deep neural networks are characterized by multiple symmetrical, equi-loss solutions that are redundant. Thus, the order of neurons in a layer and feature maps can be given arbitrary permutations, without affecting (or minimally affecting) their output. If we shuffle these neurons, or if we apply to them some perturbations (like fine-tuning) can we put them back in the original order i.e. re-synchronize? Is there a possible corruption threat? Answering these questions is important for applications like neural network white-box watermarking for ownership tracking and integrity verification. We advance a method to re-synchronize the order of permuted neurons. Our method is also effective if neurons are further altered by parameter pruning, quantization, and fine-tuning, showing robustness to integrity attacks. Additionally, we provide theoretical and practical evidence for the usual means to corrupt the integrity of the model, resulting in a solution to counter it. We test our approach on popular computer vision datasets and models, and we illustrate the threat and our countermeasure on a popular white-box watermarking method.

#13 Stability Analysis of Switched Linear Systems with Neural Lyapunov Functions [PDF] [Copy] [Kimi]

Authors: Virginie Debauche ; Alec Edwards ; Raphaël M. Jungers ; Alessandro Abate

Neural-based, data-driven analysis and control of dynamical systems have been recently investigated and have shown great promise, e.g. for safety verification or stability analysis. Indeed, not only do neural networks allow for an entirely model-free, data-driven approach, but also for handling arbitrary complex functions via their power of representation (as opposed to, e.g. algebraic optimization techniques that are restricted to polynomial functions). Whilst classical Lyapunov techniques allow to provide a formal and robust guarantee of stability of a switched dynamical system, very little is yet known about correctness guarantees for Neural Lyapunov functions, nor about their performance (amount of data needed for a certain accuracy). We formally introduce Neural Lyapunov functions for the stability analysis of switched linear systems: we benchmark them on this paradigmatic problem, which is notoriously difficult (and in general Turing-undecidable), but which admits existing recently-developed technologies and theoretical results. Inspired by switched systems theory, we provide theoretical guarantees on the representative power of neural networks, leveraging recent results from the ML community. We additionally experimentally display how Neural Lyapunov functions compete with state-of-the-art results and techniques, while admitting a wide range of improvement, both in theory and in practice. This study intends to improve our understanding of the opportunities and current limitations of neural-based data-driven analysis and control of complex dynamical systems.

#14 Robustness Verification of Multi-Class Tree Ensembles [PDF] [Copy] [Kimi]

Authors: Laurens Devos ; Lorenzo Cascioli ; Jesse Davis

Tree ensembles are one of the most widely used model classes. However, these models are susceptible to adversarial examples, which are slightly perturbed examples that elicit a misprediction. There has been significant research on designing approaches to verify the robustness of tree ensembles to such attacks. However, existing verification algorithms for tree ensembles are only able to analyze binary classifiers and hence address multiclass problems by reducing them to binary ones using a one-versus-other strategy. In this paper, we show that naively applying this strategy can yield incorrect results in certain situations. We address this shortcoming by proposing a novel approximate heuristic approach to verification for multiclass tree ensembles. Our approach is based on a novel generalization of the verification task, which we show emits other relevant verification queries.

#15 P2BPO: Permeable Penalty Barrier-Based Policy Optimization for Safe RL [PDF] [Copy] [Kimi]

Authors: Sumanta Dey ; Pallab Dasgupta ; Soumyajit Dey

Safe Reinforcement Learning (SRL) algorithms aim to learn a policy that maximizes the reward while satisfying the safety constraints. One of the challenges in SRL is that it is often difficult to balance the two objectives of reward maximization and safety constraint satisfaction. Existing algorithms utilize constraint optimization techniques like penalty-based, barrier penalty-based, and Lagrangian-based dual or primal policy optimizations methods. However, they suffer from training oscillations and approximation errors, which impact the overall learning objectives. This paper proposes the Permeable Penalty Barrier-based Policy Optimization (P2BPO) algorithm that addresses this issue by allowing a small fraction of penalty beyond the penalty barrier, and a parameter is used to control this permeability. In addition, an adaptive penalty parameter is used instead of a constant one, which is initialized with a low value and increased gradually as the agent violates the safety constraints. We have also provided a theoretical proof of the proposed method's performance guarantee bound, which ensures that P2BPO can learn a policy satisfying the safety constraints with high probability while achieving a higher expected reward. Furthermore, we compare P2BPO with other SRL algorithms on various SRL tasks and demonstrate that it achieves better rewards while adhering to the constraints.

#16 Trade-Offs in Fine-Tuned Diffusion Models between Accuracy and Interpretability [PDF] [Copy] [Kimi]

Authors: Mischa Dombrowski ; Hadrien Reynaud ; Johanna P. Müller ; Matthew Baugh ; Bernhard Kainz

Recent advancements in diffusion models have significantly impacted the trajectory of generative machine learning re-search, with many adopting the strategy of fine-tuning pre-trained models using domain-specific text-to-image datasets. Notably, this method has been readily employed for medical applications, such as X-ray image synthesis, leveraging the plethora of associated radiology reports. Yet, a prevailing concern is the lack of assurance on whether these models genuinely comprehend their generated content. With the evolution of text conditional image generation, these models have grown potent enough to facilitate object localization scrutiny. Our research underscores this advancement in the critical realm of medical imaging, emphasizing the crucial role of interpretability. We further unravel a consequential trade-off between image fidelity – as gauged by conventional metrics – and model interpretability in generative diffusion models. Specifically, the adoption of learnable text encoders when fine-tuning results in diminished interpretability. Our in-depth exploration uncovers the underlying factors responsible for this divergence. Consequently, we present a set of design principles for the development of truly interpretable generative models. Code is available at https://github.com/MischaD/chest-distillation.

#17 From Hope to Safety: Unlearning Biases of Deep Models via Gradient Penalization in Latent Space [PDF] [Copy] [Kimi]

Authors: Maximilian Dreyer ; Frederik Pahde ; Christopher J. Anders ; Wojciech Samek ; Sebastian Lapuschkin

Deep Neural Networks are prone to learning spurious correlations embedded in the training data, leading to potentially biased predictions. This poses risks when deploying these models for high-stake decision-making, such as in medical applications. Current methods for post-hoc model correction either require input-level annotations which are only possible for spatially localized biases, or augment the latent feature space, thereby hoping to enforce the right reasons. We present a novel method for model correction on the concept level that explicitly reduces model sensitivity towards biases via gradient penalization. When modeling biases via Concept Activation Vectors, we highlight the importance of choosing robust directions, as traditional regression-based approaches such as Support Vector Machines tend to result in diverging directions. We effectively mitigate biases in controlled and real-world settings on the ISIC, Bone Age, ImageNet and CelebA datasets using VGG, ResNet and EfficientNet architectures. Code and Appendix are available on https://github.com/frederikpahde/rrclarc.

#18 Automatically Testing Functional Properties of Code Translation Models [PDF] [Copy] [Kimi]

Authors: Hasan Ferit Eniser ; Valentin Wüstholz ; Maria Christakis

Large language models are becoming increasingly practical for translating code across programming languages, a process known as transpiling. Even though automated transpilation significantly boosts developer productivity, a key concern is whether the generated code is correct. Existing work initially used manually crafted test suites to test the translations of a small corpus of programs; these test suites were later automated. In contrast, we devise the first approach for automated, functional, property-based testing of code translation models. Our general, user-provided specifications about the transpiled code capture a range of properties, from purely syntactic to purely semantic ones. As shown by our experiments, this approach is very effective in detecting property violations in popular code translation models, and therefore, in evaluating model quality with respect to given properties. We also go a step further and explore the usage scenario where a user simply aims to obtain a correct translation of some code with respect to certain properties without necessarily being concerned about the overall quality of the model. To this purpose, we develop the first property-guided search procedure for code translation models, where a model is repeatedly queried with slightly different parameters to produce alternative and potentially more correct translations. Our results show that this search procedure helps to obtain significantly better code translations.

#19 A Simple and Yet Fairly Effective Defense for Graph Neural Networks [PDF] [Copy] [Kimi]

Authors: Sofiane Ennadir ; Yassine Abbahaddou ; Johannes F. Lutzeyer ; Michalis Vazirgiannis ; Henrik Boström

Graph Neural Networks (GNNs) have emerged as the dominant approach for machine learning on graph-structured data. However, concerns have arisen regarding the vulnerability of GNNs to small adversarial perturbations. Existing defense methods against such perturbations suffer from high time complexity and can negatively impact the model's performance on clean graphs. To address these challenges, this paper introduces NoisyGNNs, a novel defense method that incorporates noise into the underlying model's architecture. We establish a theoretical connection between noise injection and the enhancement of GNN robustness, highlighting the effectiveness of our approach. We further conduct extensive empirical evaluations on the node classification task to validate our theoretical findings, focusing on two popular GNNs: the GCN and GIN. The results demonstrate that NoisyGNN achieves superior or comparable defense performance to existing methods while minimizing added time complexity. The NoisyGNN approach is model-agnostic, allowing it to be integrated with different GNN architectures. Successful combinations of our NoisyGNN approach with existing defense techniques demonstrate even further improved adversarial defense results. Our code is publicly available at: https://github.com/Sennadir/NoisyGNN.

#20 Invisible Backdoor Attack against 3D Point Cloud Classifier in Graph Spectral Domain [PDF] [Copy] [Kimi]

Authors: Linkun Fan ; Fazhi He ; Tongzhen Si ; Wei Tang ; Bing Li

3D point cloud has been wildly used in security crucial domains, such as self-driving and 3D face recognition. Backdoor attack is a serious threat that usually destroy Deep Neural Networks (DNN) in the training stage. Though a few 3D backdoor attacks are designed to achieve guaranteed attack efficiency, their deformation will alarm human inspection. To obtain invisible backdoored point cloud, this paper proposes a novel 3D backdoor attack, named IBAPC, which generates backdoor trigger in the graph spectral domain. The effectiveness is grounded by the advantage of graph spectral signal that it can induce both global structure and local points to be responsible for the caused deformation in spatial domain. In detail, a new backdoor implanting function is proposed whose aim is to transform point cloud to graph spectral signal for conducting backdoor trigger. Then, we design a backdoor training procedure which updates the parameter of backdoor implanting function and victim 3D DNN alternately. Finally, the backdoored 3D DNN and its associated backdoor implanting function is obtained by finishing the backdoor training procedure. Experiment results suggest that IBAPC achieves SOTA attack stealthiness from three aspects including objective distance measurement, subjective human evaluation, graph spectral signal residual. At the same time, it obtains competitive attack efficiency. The code is available at https://github.com/f-lk/IBAPC.

#21 CASE: Exploiting Intra-class Compactness and Inter-class Separability of Feature Embeddings for Out-of-Distribution Detection [PDF] [Copy] [Kimi]

Authors: Shuai Feng ; Pengsheng Jin ; Chongjun Wang

Detecting out-of-distribution (OOD) inputs is critical for reliable machine learning, but deep neural networks often make overconfident predictions, even for OOD inputs that deviate from the distribution of training data. Prior methods relied on the widely used softmax cross-entropy (CE) loss that is adequate for classifying in-distribution (ID) samples but not optimally designed for OOD detection. To address this issue, we propose CASE, a simple and effective OOD detection method by explicitly improving intra-class Compactness And inter-class Separability of feature Embeddings. To enhance the separation between ID and OOD samples, CASE uses a dual-loss framework, which includes a separability loss that maximizes the inter-class Euclidean distance to promote separability among different class centers, along with a compactness loss that minimizes the intra-class Euclidean distance to encourage samples to be close to their class centers. In particular, the class centers are defined as a free optimization parameter of the model and updated by gradient descent, which is simple and further enhances the OOD detection performance. Extensive experiments demonstrate the superiority of CASE, which reduces the average FPR95 by 37.11% and improves the average AUROC by 15.89% compared to the baseline method using a softmax confidence score on the more challenging CIFAR-100 model.

#22 Solving Non-rectangular Reward-Robust MDPs via Frequency Regularization [PDF] [Copy] [Kimi]

Authors: Uri Gadot ; Esther Derman ; Navdeep Kumar ; Maxence Mohamed Elfatihi ; Kfir Levy ; Shie Mannor

In robust Markov decision processes (RMDPs), it is assumed that the reward and the transition dynamics lie in a given uncertainty set. By targeting maximal return under the most adversarial model from that set, RMDPs address performance sensitivity to misspecified environments. Yet, to preserve computational tractability, the uncertainty set is traditionally independently structured for each state. This so-called rectangularity condition is solely motivated by computational concerns. As a result, it lacks a practical incentive and may lead to overly conservative behavior. In this work, we study coupled reward RMDPs where the transition kernel is fixed, but the reward function lies within an alpha-radius from a nominal one. We draw a direct connection between this type of non-rectangular reward-RMDPs and applying policy visitation frequency regularization. We introduce a policy-gradient method, and prove its convergence. Numerical experiments illustrate the learned policy's robustness and its less conservative behavior when compared to rectangular uncertainty.

#23 Balance Reward and Safety Optimization for Safe Reinforcement Learning: A Perspective of Gradient Manipulation [PDF] [Copy] [Kimi]

Authors: Shangding Gu ; Bilgehan Sel ; Yuhao Ding ; Lu Wang ; Qingwei Lin ; Ming Jin ; Alois Knoll

Ensuring the safety of Reinforcement Learning (RL) is crucial for its deployment in real-world applications. Nevertheless, managing the trade-off between reward and safety during exploration presents a significant challenge. Improving reward performance through policy adjustments may adversely affect safety performance. In this study, we aim to address this conflicting relation by leveraging the theory of gradient manipulation. Initially, we analyze the conflict between reward and safety gradients. Subsequently, we tackle the balance between reward and safety optimization by proposing a soft switching policy optimization method, for which we provide convergence analysis. Based on our theoretical examination, we provide a safe RL framework to overcome the aforementioned challenge, and we develop a Safety-MuJoCo Benchmark to assess the performance of safe RL algorithms. Finally, we evaluate the effectiveness of our method on the Safety-MuJoCo Benchmark and a popular safe benchmark, Omnisafe. Experimental results demonstrate that our algorithms outperform several state-of-the-art baselines in terms of balancing reward and safety optimization.

#24 π-Light: Programmatic Interpretable Reinforcement Learning for Resource-Limited Traffic Signal Control [PDF] [Copy] [Kimi]

Authors: Yin Gu ; Kai Zhang ; Qi Liu ; Weibo Gao ; Longfei Li ; Jun Zhou

The recent advancements in Deep Reinforcement Learning (DRL) have significantly enhanced the performance of adaptive Traffic Signal Control (TSC). However, DRL policies are typically represented by neural networks, which are over-parameterized black-box models. As a result, the learned policies often lack interpretability, and cannot be deployed directly in the real-world edge hardware due to resource constraints. In addition, the DRL methods often exhibit limited generalization performance, struggling to generalize the learned policy to other geographical regions. These factors limit the practical application of learning-based approaches. To address these issues, we suggest the use of an inherently interpretable program for representing the control policy. We present a new approach, Programmatic Interpretable reinforcement learning for traffic signal control (π-light), designed to autonomously discover non-differentiable programs. Specifically, we define a Domain Specific Language (DSL) and transformation rules for constructing programs, and utilize Monte Carlo Tree Search (MCTS) to find the optimal program in a discrete space. Extensive experiments demonstrate that our method consistently outperforms baseline approaches. Moreover, π-Light exhibits superior generalization capabilities compared to DRL, enabling training and evaluation across intersections from different cities. Finally, we analyze how the learned program policies can directly deploy on edge devices with extremely limited resources.

#25 Generative Model for Decision Trees [PDF] [Copy] [Kimi]

Authors: Riccardo Guidotti ; Anna Monreale ; Mattia Setzu ; Giulia Volpi

Decision trees are among the most popular supervised models due to their interpretability and knowledge representation resembling human reasoning. Commonly-used decision tree induction algorithms are based on greedy top-down strategies. Although these approaches are known to be an efficient heuristic, the resulting trees are only locally optimal and tend to have overly complex structures. On the other hand, optimal decision tree algorithms attempt to create an entire decision tree at once to achieve global optimality. We place our proposal between these approaches by designing a generative model for decision trees. Our method first learns a latent decision tree space through a variational architecture using pre-trained decision tree models. Then, it adopts a genetic procedure to explore such latent space to find a compact decision tree with good predictive performance. We compare our proposal against classical tree induction methods, optimal approaches, and ensemble models. The results show that our proposal can generate accurate and shallow, i.e., interpretable, decision trees.